Perhaps the Intermediate Value Theorem

نویسنده

  • Wim Veldman
چکیده

In the context of intuitionistic real analysis, we introduce the set F consisting of all continuous functions φ from [0, 1] to R such that φ(0) = 0 and φ(1) = 1. We let I0 be the set of all φ in F for which we may find x in [0, 1] such that φ(x) = 12 . It is well-known that there are functions in F that we can not prove to belong to I0, and that, with the help of Brouwer’s Continuity Principle one may derive a contradiction from the assumption that I0 coincides with F . We show that Brouwer’s Continuity Principle also enables us to define uncountably many subsets G of F with the property I0 ⊆ G ⊂ (I0)¬¬.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

SOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS

In this paper, we study fuzzy calculus in two main branches differential and integral.  Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating  $gH$-derivative of a composite function.  Two techniques namely,  Leibniz's rule and integration by parts are introduced for ...

متن کامل

The Aftermath of the Intermediate Value Theorem

The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.). However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano’s era (1781–1848). Indeed, this Czech mathematician or perhaps philosopher has...

متن کامل

Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel ‎Kernel

‎The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the ‎method.

متن کامل

Intermediate Value Theorem for Analytic Functions on a Levi-Civita Field

The proof of the intermediate value theorem for power series on a LeviCivita field will be presented. After reviewing convergence criteria for power series [19], we review their analytical properties [18]. Then we state and prove the intermediate value theorem for a large class of functions that are given locally by power series and contain all the continuations of real power series: using iter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005